Нова достигнућа у Теорији обједињене механике – позивно предавање проф. др Џемала Басарана

Проф. др Џемал Басаран (Cemal Basaran) са Универзитета у Бафалу (САД) биће гост Машинског факултета у Београду, где ће одржати позивно предавање – семинар под називом „Нова достигнућа у Теорији обједињене механике“ (Recent Developments in Unified Mechanics Theory). Предавање ће бити одржано у уторак, 18. априла, у Свечаној сали Машинског факултета (211/II), са почетком у 11 часова.  

Професор Басаран је редовни професор Универзитета у Бафалу, Државни универзитет у Њујорку, Департман за грађевинарство, структурни инжењеринг и инжењерство заштите животне средине, Сједињене Америчке Државе. Аутор је књиге под насловом: „Теорија обједињене механике са применом“ у издању еминетне научно-издавачке куће Шпрингер (Cemal Basaran, Introduction to Unified Mechanics Theory with Applications, 2nd Edition, Springer Nature Switzerland AG, 2022 (https://link.springer.com/book/10.1007/978-3-030-57772-8).

Професор др Џемал Басаран ће  говорити о најновијим достигнућима у развоју и примени Теорији обједињене механике. Ова теорија обједињује универзалне Њутнове законе кретања и законе термодинамике на аб-иниционом нивоу. Због тога су дисипација енергије, ентропија и степен деградације и оштећења било ког система директно укључени у парцијалну диференцијалну једначину. Међутим, Њутнов просторно-временски координатни систем мора бити модификован. Због тога се у просторно-временски координатни систем уводи нова линеарно независна пета оса. Нова оса се зове оса Термодинамичког индекса стања (ТСИ) која може имати вредности између нуле и један.

Кратка биографија – Проф. др Џемал Басаран 

 Dr. Cemal Basaran is a Professor in the Dept. of Civil, Structural and Environmental Engineering and the Director of Electronic Packaging Laboratory at University at Buffalo, The State University of New York, USA. He specializes in computational and experimental damage mechanics of electronics materials. He has authored 140+ peer reviewed archival journal publications and several book chapters in the fields of damage mechanics. His research includes development of the Unified Mechanics Theory, which is the unification of Newton’s universal laws of motion and the laws of Thermodynamics. He is also interested in nano mechanics of 2-D electronic materials. Some of his awards include 1997 US Navy ONR Young Investigator Award, and 2011 ASME EPPD Excellence in Mechanics Award. He is a Fellow of the ASME. He has served and continues to serve on editorial board of 15 peer reviewed international journals, including IEEE Components, Packaging and Manufacturing Tech., ASME Journal of Electronic Packaging, ASCE Journal of Nanomechanics and Micromechanics, Entropy, as well as numerous other journals. He has been the primary dissertation advisor to 25 PhD students. His research has been funded by NSF, ONR, DoD, State of New York, and many industrial sponsors including but not limited to Northrop Grumman, Raytheon, Delphi, Intel, DuPont, Texas Instruments, Micron, Tyco Electronics, Analog Devices and many others. He serves as advisor to many national and international funding agencies around the globe.

Више информација о проф. др Џемалу Басарану:  https://engineering.buffalo.edu/civil-structural-environmental/people/faculty_directory/cemal-basaran.html

Апстракт позивног предавања проф. др Џемала Басарана

Newton’s three universal laws of motion do not account for, dissipation, degradation, or damage in the system. However, the laws of thermodynamics govern dissipation, degradation, and damage evolution. The unified mechanics theory unifies the universal laws of motion of Newton and the laws of thermodynamics at the ab-initio level. Therefore, the dissipation, degradation, and damage mechanics of any system are included directly in the governing partial differential equation. However, to be able to unify these two sets of laws the Newtonian spacetime coordinate system must be modified. Therefore, a new linearly independent fifth axis is introduced into the space-time coordinate system. The new axis is called the Thermodynamic State Index (TSI) axis which can have values between zero and one. When the entropy generation rate is maximum TSI coordinate is zero. When the entropy generation rate is minimum the TSI coordinate approaches the maximum value of one. The TSI axis is linearly independent, hence, the information represented on the TSI axis cannot be represented on the space-time coordinates. Moreover, the derivative of displacements with respect to entropy is no longer zero, as in classical continuum mechanics. The damage evolution along the TSI axis follows Boltzmann’s formulation of the second law of thermodynamics. Therefore, the entropy generation rate must be calculated at each time increment at each material point. The entropy generation rate can be calculated directly from the thermodynamic fundamental equation of a material, which includes all entropy-generating micro-mechanisms that contribute to the failure criterion chosen. The thermodynamic fundamental equation must be derived analytically based on fundamentals of physical chemistry without empirical functions based on curve fitting to test data. Recently, thermodynamic fundamental equations for very high cycle fatigue, metal corrosion, and metal hydrogen embrittlement have been derived analytically and verified experimentally. They will be also presented.

 

Bookmark the permalink.

Comments are closed.